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Heteroatom-substituted alkylstannanes are valuable as syntheticTable 1.

equivalents of functionalized alkyl anioAddydrostannylation of
alkenes with hydrostannanes provides convenient routes to alkyl-
stannanes bearing a heteroatom(s) atheor a more remote
position}2 Particularly, hydrostannylation reactions involving stan-
nyl radicals are quite useful because they are tolerant of various
polar functionalities and applicable to both unactivated and activated
alkenes’ However, there are few examples of diastereoselective
synthesis of functionalized alkylstannanes by alkene hydrostan-
nylation# We have previously reported that dibutyl(trifluoromethane-
sulfoxy)stannane (BSn(OTf)H, 1a) realizes highly regio- and
stereoselective homolytic hydrostannylation of various alkyhols.
The high Lewis acidity ofia plays a crucial role for the regio- and
stereocontrof. We herein report highly diastereoselective hy-
drostannylation of allyl and homoallyl alcohols witla, which is
the first example of acyclic stereocontrol in hydrostannylation of
unactivated alkenes.

We initially examined the hydrostannylation of allyl alcotaa
to optimize the reaction conditions (Table 1). Hydrostannaae
reacted spontaneously wigtain hexane at 0C. Butylation of the
reaction mixture with BulLi gavey-stannylated alcohoBa in
moderate yield with googyndiastereoselectivity (entry 1). Addition
of Et;B—dry air as radical initiator increased not only the reaction
rate but also theynselectivity (entry 2). The use of BO as solvent
also was effective in improving the diastereoselectivity. Thus the
Et;B-initiated hydrostannylation o2a with 1a in Et,O achieved
high syn selectivity (entry 3¢ Under the same conditions, Bu
SnCIH (lb), a less Lewis acidic hydrostannane, added2&
efficiently, but the diastereoselectivity was rather low (entry 5).
Additionally, methyl etheRa was inferior to2ain both reactivity

.. de,f
and stereoselectivity (entry 6). These results suggest that a strong 4(,:9

Sn—0 coordination brings about the successful hydrostannylation
of 2a with 1a°

The present hydrostannylation usibgwas applied to other allyl
alcohols2b—g (Table 2). The EB-initiated reactions o2b—d at
0 °C gave the correspondingstannylated alcohof8b—d, respec-
tively, with good to highsyn selectivity (entries 4+3). The
stereoselectivity increased with an increase in the bulkiness of the
o-substituent R Treatment of2ef with 1a at 0 °C resulted in
exclusive formation of deoxygenated alkedAg®d.owering the
reaction temperature to78 °C effectively suppressed this undesired
reaction to affordBef in good yield (entries 4 and 5). Allyl alcohol
2g, bearing an electron-withdrawing group at fbposition, also
underwent the stereoselective hydrostannylation wétfentry 6).
y-Substituted allyl alcoho2h as well as2ef was converted into
the corresponding deoxygenated alkenes & 0The reaction at
—78°C gave the desired produgh as a single isomer (entry #.

We next examined the hydrostannylation of homoallylic alcohols
4 with 1a. The EtB-initiated reaction o#lain Et,O at 0°C gave
o-stannylated alcohdba in high yield with synselectivity (96%,
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Hydrostannylation of Allyl Alcohol 2a with 12

BupSnXH (1)
OR EtyB-dry air BuLi OR  SnBug

Ph)\f 0°C.an Ph

2a,R =H;2a',R=Me 3a,R=H;3a',R=Me
entry X (BupSnXH) substrate solvent yield (%)° sym.anti®

1 OTf (13 2a hexane 66 89:11

2 OTf 2a hexane 74 92:8

3 OTf 2a Et,O 75 97:3

4 oTf 2a THF 75 95:5

5 Cl (1b) 2a EtO 72 79:21

6° OTf 2d Et,O 8 83:17

a Unless otherwise noted, the initial hydrostannylation step was carried
out with 1 (1.10 mmol),2a (1.00 mmol), E4B (1.0 M in hexane, 0.050
mmol), and dry air (5 mL) in solvent (2 mL) at®. The resultant mixture
was diluted with E£O (2 mL) and treated with BuLi (1.6 M in hexane, 2.5
mmol) at 0°C for 20 min.? Isolated yield.c Determined by!H NMR
analysis of the isolated produétThe hydrostannylation was performed
without EgB—dry air for 6 h.® The butylation was performed with BuLi
(1.2 mmol) at—78 °C for 30 min.

Table 2. Hydrostannylation of Allyl Alcohols 2 with 1a2

OH 1a, EtzB-dry air  Buli OH  SnBuy
R! /S/\ R3 R R3
e Et,0,0°C,3h A2
2 3
Substrate

entry RL R? R3 yield (%)>  syn:antic
1 Me Me H 2b 88 84:16
2 i-Pr Me H 2c 75 95:5
3 t-Bu Me H 2d 71 97:3

4-MeO—Ph Me H 2e 68 92:8

1-naphthyl Me H 2f 83 93:7
Geh Ph CQOMe H 29 64 92:8
79 Ph (CH)4 2h 83 [

a—c See footnotea—c in Table 1.9 The hydrostannylation was performed
at —78°C for 6 h.® The butylation was performed at78 °C for 30 min.
fwith EtsB (0.2 mmol) and dry air (20 mL)¥ With EtsB (0.1 mmol)." With
BuLi (2.2 mmol).' Single isomer. For the relative configuration, see the
Supporting Information.

synanti = 83:17). The stereoselectivity could be improved by using
hexane as solvent (Scheme 1). Under these conditiiimsd also
underwent highly efficient and highly stereoselective hydrostan-
nylation. The extent of diastereoselectivity was not so sensitive to
the bulkiness of the-substituent Ras that in the reaction of allyl
alcohols2. The hydrostannylation ofe followed by butylation
formed stannylated lactor@with high cis selectivity.

The hydrostannylation reactions @k and 4a with la were
suppressed by galvinoxyl, a radical scavenger, and accelerated by
Et;B—dry air. Accordingly, the present hydrostannylation proceeds
probably via the radical chain mechanism involvingrstannylalkyl

10.1021/ja052245n CCC: $30.25 © 2005 American Chemical Society
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Scheme 1. Hydrostannylation of Homoallyl Alcohols 4 with 1a

M 1a, Et3B-dry air BuLi /OKH/'\/
B
R' hexane 0°C,20min  R' SnBug
4 0°C,3h 5
a:R'=Ph 94%, dr=94:6
b: R'=Me 96%, dr=90:10

c:R'=iPr 92%, dr=90:10
d:R'= tBu  96%, dr=93:7

(o}

OH CO,Me as above BuLi
o)

Ph ~78°C, 30 min SnBug

4e Ph
6, 52%, dr=96:4

Scheme 2. Origin of Stereochemical Outcomes

1
OH *Sn R 1a BuLi
R1/|Y —_ o O\H —>——>» syn3
R T s | —esn
OH R2 *Sn H/O‘“-Sn 1a BuLi  syn-5
B —— R1 /el —_— or
R’ H R2 —+Sn cis-6
4 8

Sn=Sn(OTf)Bu,

Scheme 3. Synthetic Use of Stannylated Alcohols 3

MEMCI MEMO  SnBug 1) BuLi OMEM
syn.Sa —_— Ph —_— Ph Ph
CHoCl, 2) PhCHO &H

9,73%, dr=61:39

OH SnBuj SOCI, P R H
2, Py
—_—
R1)\‘) YN
R2 THF, rt, 10 h H R?
syn-3 trans-10
a:R'=Ph, R?=Me 85%

e:R'=4-MeO-Ph,R?=Me 99%
f: R' = 1-naphthyl, R2=Me 96%
g:R' = Ph, R2 = CO,Me 85%

radical intermediate. Judging from the importance of a strongGn
coordination in the stereocontrol, the origin of the stereochemical

no erosion of the 1,8ynrelative configuratiod? Upon treatment
with pyridine and thionyl chloridesyn3 could be converted into
trans-1,2-disubstituted cyclopropané®.1

In conclusion, we have demonstrated that the Lewis acidic
hydrostannanéa is valuable for highly stereoselective homolytic
hydrostannylation of allyl and homoallyl alcohols. The formation
of the Sn-O coordinate bond in theg3-stannylalkyl radical
intermediate would be the key factor of the present diastereocontrol.
This work provides a novel example of acyclic stereocontrol of
radical reactions.
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